
Real-Time Plane Segmentation
using RGB-D Cameras

Dirk Holz1, Stefan Holzer2, Radu Bogdan Rusu3, and Sven Behnke1

1 Autonomous Intelligent Systems Group, University of Bonn, Germany
holz@ais.uni-bonn.de, behnke@cs.uni-bonn.de

2 Department of Computer Science, Technical University of Munich (TUM), Germany
holzers@in.tum.de

3 Willow Garage, Inc., Menlo Park, CA, USA
rusu@willowgarage.com

Abstract. Real-time 3D perception of the surrounding environment is a
crucial precondition for the reliable and safe application of mobile service
robots in domestic environments. Using a RGB-D camera, we present a
system for acquiring and processing 3D (semantic) information at frame
rates of up to 30Hz that allows a mobile robot to reliably detect obstacles
and segment graspable objects and supporting surfaces as well as the
overall scene geometry. Using integral images, we compute local surface
normals. The points are then clustered, segmented, and classified in both
normal space and spherical coordinates. The system is tested in different
setups in a real household environment.
The results show that the system is capable of reliably detecting obstacles
at high frame rates, even in case of obstacles that move fast or not
considerably stick out of the ground. The segmentation of all planes in
the 3D data even allows for correcting characteristic measurement errors
and for reconstructing the original geometry in far ranges.

1 Introduction

Perceiving the geometry of environmental structures surrounding the robot is
a crucial prerequisite for applying service robots in human living environments.
These environments tend to be cluttered and highly dynamic. The first requires
for three-dimensional information about the environmental structures and ob-
jects contained therein, whereas the latter necessitates real-time processing of
the acquired spatial information.

Recent RGB-D cameras, such as the Microsoft Kinect camera, acquire both
visual information (RGB) like regular camera systems, as well as depth informa-
tion (D) at high frame rates. In terms of measurement accuracy in low ranges
(up to a few meters), the acquired depth information does not rank behind
the accuracy achieved with 3D laser range scanners. With respect to the frame
rate, however, RGB-D cameras clearly outperform 3D laser range scanners, e.g.,
30Hz vs. 1Hz. However, for applying and making use of these cameras in typical
mobile manipulation problems like detecting objects and collision avoidance, the



acquired RGB-D camera data (or the corresponding 3D point clouds) need to
be processed in real-time (possibly with limited computing power).

We present a system of algorithms for processing 3D point clouds in real-time
which explicitly makes use of the organized structure of RGB-D camera data. It
allows for

1. reliably detecting obstacles,
2. detecting graspable objects as well as the planes supporting them, and
3. segmenting and classifying all planes in the acquired 3D data.

An important characteristic of the proposed system is that the all of the above
outcomes can be obtained at frame rates of up to 30Hz. In addition to the
organized data structure, we exploit a specific characteristic of man-made en-
vironments, namely being primarily composed of connected planes like walls,
ground floors, ceilings, tables etc. In fact, the work presented in this paper is
solely based on a fast segmentation of all planes in 3D point clouds.

The remainder of this paper is organized as follows: After giving an overview
on related work in Section 2, we discuss methods for computing local surface
normals and present a fast variant using integral images in Section 3. Clustering
these normals and segmenting all planes in acquired point clouds is described in
Section 4. Detecting graspable objects and obstacles based on this information
is discussed in Section 5. Section 6 summarizes experimental results.

2 Related work

Operating in complex real-world environments requires for powerful perception
capabilities. 3D semantic perception has seen a lot of progress recently, which is
also reflected by the increasing number of journals and workshops held at major
conferences that focus on this topic. Here, we focus on two aspects – extracting
semantic information from 3D data and using 3D data for obstacle detection
and collision avoidance.

Especially tasks like collision avoidance necessitate a fast perception of ob-
stacles and processing acquired sensor data in real-time. A common way of using
3D data for collision avoidance in the navigation domain is to extract relevant
information from the 3D input and to project it down to virtual 2D laser range
scans for which navigation and collision avoidance are well studied topics. Wulf et
al. use these virtual scans for both collision avoidance and localization in ceiling
structures [12]. Holz et al. distinguish two types of virtual scans, virtual struc-
ture and obstacle maps. The first type models environmental structures such
as walls in a virtual 2D laser range scan, the latter information about closest
obstacles [3]. Yuan et al. follow this approach in [13] to fuse sensor information
from a Time-of-Flight (ToF) camera with that of a 2D laser range scanner to
compensate for the smaller field of view of ToF cameras. Droeschel et al. only
use a ToF camera for obstacle detection, but mount this camera on a pan-tilt
and use an active gaze control to keep relevant regions in sight [1]. Measured
points sticking out of the ground are considered as obstacles. This information



is then fused with other 2D laser range scanners on the robot, again, by pro-
jecting them into a virtual 2D laser scan. Problems arise in regions where the
data is highly affected by noise in case of motion blur. In both cases floor points
may be considered as obstacles. Furthermore, obstacles whose size lies below the
measurement accuracy and the used thresholds to compensate for noisy data,
cannot be detected. In contrast, we consider as obstacles both points sticking out
of segmented planes, as well as points with different local surface orientations.
This allows for detecting even these obstacles reliably as obstacles.

Nüchter et al. extract environmental structures such as walls, ceilings and
drivable surfaces from 3D laser range scans and use trained classifiers to de-
tect objects, like for instance humans and other robots [8]. They examine range
differences in consecutive laser scan points to get an approximate estimate if
a point is lying on a horizontal or a vertical surface. Triebel et al. use Con-
ditional Random Fields to segment and discover repetitive objects in 3D laser
range scans [11]. Rusu et al. extract hybrid representations of objects consist-
ing of detected shapes, as well as surface reconstructions where no shapes have
been detected [9]. Endres et al. extract, respectively, objects and point clusters
from the background structure in range scans (assuming objects being spatially
disconnected) [2]. Using latent Dirichlet allocation, they can derive classes of
objects from these clusters that are similar in shape. Lai and Fox use data from
Google’s 3D Warehouse to classify clusters of points in 3D laser range scans [5].
They detect walls, trees and cars in street scenes. Pathak et al. decompose ac-
quired 3D data into plane segments and use this information for registering point
clouds. Steder et al. compute range images from point clouds, extract borders
and key-points and use 3D feature descriptors to find and match repetitive struc-
tures [10]. The above approaches show good results when processing accurate
3D laser range data, but tend to have high runtime requirements. Here we fo-
cus on less complex but fast methods to obtain an initial segmentation of the
environment in real-time that can be used in a variety of applications.

3 Fast computation of local surface normals

Local geometric features such as surface normal or curvature at a point form
a fundamental basis for extracting semantic information from 3D sensor data.
A common way for determining the normal to a point pi on a surface is to
approximate the problem by fitting a plane to the point’s local neighborhood
Pi. This neighborhood is formed either by the k nearest neighbors of pi or by all
points within a radius r from pi. Given the Pi, the local surface normal ni can
be estimated by analyzing the eigenvectors of the covariance matrix Ci ∈ R3×3

of Pi. An estimate of ni can be obtained from the eigenvector vi,0 corresponding
to the smallest eigenvalue λi,0. The ratio between λi,0 and the sum of eigenvalues
provides an estimate of the local curvature.

Both k and r highly influence how well the estimated normal represents the
local surface at pi. Chosen too large, environmental structures are consider-
ably smoothened so that local extrema such as corners completely vanish. If



the neighborhood is too small, the estimated normals are highly affected by the
noise in the depth information. A common way to compensate these effects that
is also used in [9] is to compute the distances of all points in Pi to the local
plane through pi. These distances are then used in a second run to weight the
points in Pi in the covariance computation. By this means, corners and edges are
less smoothened and the estimated normals better approximate the local surface
structure. However, with or without this second run, estimating the point’s local
neighborhood is computationally expensive, even when using approximate search
in kD-trees which is O(n log n) for n randomly distributed data points (plus the
construction of the tree). Another possibility to compensate for the aforemen-
tioned effects, is to compute the normals in different neighborhood ranges or
different scales of the input data and to select the most likely surface normal for
each point.

Less accurate, but considerably faster is to consider pixel neighborhoods in-
stead of spatial neighborhoods [4]. That is, the organized structure of the point
cloud as acquired by Time-of-Flight or RGB-D cameras is used instead of search-
ing through the 3D space spanned by the points in the cloud. Compared to a
fixed radius r or a fixed number of neighbors k, using a fixed pixel neighborhood
has the advantage of having smaller neighborhoods in close range (causing more
accurate normals) and larger neighborhoods smoothing the data in far ranges
that is more affected by noise and other error sources (see e.g. [6] for an overview
on Time-of-Flight camera error sources).

By using a fixed pixel neighborhood and, in addition, neglecting pre-computed
neighbors outside of some maximum range r as in [4], one gets rid of the com-
putationally expensive neighbor search, but still needs to compute and analyze
the local covariance matrix. Here we use an approach that directly computes the
normal vector over the neighboring pixels in x and y image space.

The basic principle of this approach is to compute two vectors which are
tangential to the local surface at the point pi. From these two tangential vectors
we can easily compute the normal using the cross product. The simplest ap-
proach for computing the normals is to compute them between the left and right
neighboring pixel and between the upper and lower neighboring pixel as illus-
trated in Figure 1.a. However, since we expect noisy data and regions in which
no depth information is available (a special characteristic of the used cameras),
the resulting normals would also be highly affected. For this reason we apply a
smoothing on the tangential vectors by computing the average vectors within a
certain neighborhood. To perform this smoothing efficiently we use integral im-
ages. We first create two maps of tangential vectors, one for the x- and one for
the y-direction (again in image space). The vectors for these maps are computed
between corresponding 3D points in the point cloud. That is, each element of
theses vectors is a 3D vector. For each of the channels (Cartesian x, y, and z)
of each of the maps we then compute an integral image, which leads to a total
number of six integral images. Using these integral images we can compute the
average tangential vectors by needing only 2× 4× 3 memory accesses, indepen-



(a) Basic principle (b) Example (top view) (c) Example (side view)

Fig. 1. Principle of fast normal computation using integral images (a). Two vectors
tangential to the surface at the desired position are computed using the red points.
The local surface normal is computed by applying the cross product to them. A typical
result of an acquired point cloud with surface normals is shown in (b) and (c).

dent of the size of the smoothing area. The overall runtime complexity is linear
in the number of points for which normals are computed (cf. Figure 6).

The computation of normals is conducted in the local image coordinate frame
(Ẑ-axis pointing forwards in measurement direction). For further processing, we
transform both Cartesian coordinates of the points as well as the local surface
normals into the base coordinate frame of the robot (right-handed coordinate
frame with the X̂-axis pointing in measurement and driving direction, the Ẑ-axis
point upwards representing the height of points). In case this transformation is
not known, we only apply the corresponding reflection matrix and a translation
by 2cm along the Ŷ -axis that accounts for the difference in position between the
regular camera and the infrared camera that senses the emitted pattern for depth
reconstruction. It should be noted, that this transformation (or the knowledge
of the camera’s position and orientation in space) is not necessary for the fast
plane segmentation in Section 4, but only for task-specific applications like the
extraction of horizontal surfaces.

In addition to the fast normal estimation, we compute spherical coordinates
(r, φ, θ) of the local surface normals that ease the classification of measured
points and the processing steps presented in the following. We define φ as the
angle between the local surface normal (projected onto the X̂Ŷ -plane), and the
X̂-axis, r the distance to the origin in normal space, and θ the angle between the
normal and the X̂Ŷ -plane. (r, φ) is of special interest in obstacle detection, as it
represents direction and distance of an obstacle to the robot (in the X̂Ŷ -plane).
For plane segmentation, r is abused in our implementation to hold the plane’s
distance from the origin (in Cartesian space).

4 Fast plane segmentation

Man-made environments tend to be primarily composed of planes. Detected and
segmented planes already adequately model the surface of sensed environmental



(a) Input camera image (b) Segmented cloud

(c) nx space (d) ny space (e) nz space

Fig. 2. Typical result of the first segmentation step: points with similar surface normal
orientation in the input data (a) are merged into clusters (b, shown in both Cartesian
and normal space). The components of the normals (nx, ny, and nz) are visualized
in (c-e) using a color coding from -1 (red) to 1 (blue). This simple clustering already
allows for a fast segmentation of planes with similar surface normal orientation, e.g.,
extracting all horizontal planes.

structures. We segment local surface normals in two steps: 1) we cluster (and
merge) the points in normal space (nx,ny,nz)T to obtain clusters of plane
candidates and 2) cluster (and merge) planes of similar local surface normal
orientation in distance space (distance between plane and origin).

4.1 Initial segmentation in normal space

For the initial clustering step in which we want to find clusters of points with
similar local surface normal orientations, we construct a voxel grid either in
normal space or using the spherical coordinates. Using the spherical coordinates
allows for clustering in the two-dimensional (φ, θ)-space, but requires a larger
neighborhood in the subsequent processing step in which we merge clusters. Both
results and processing time do not differ.

For clustering in normal space, we compute a three-dimensional voxel grid
and map local surface normals to the corresponding grid cell w.r.t. the cell’s
size. Points for which the surface normals fall into the same cell, form the initial
cluster and potential set of planes with the same normal orientation. Either all
non-empty cells or only those with a minimum number of points are considered
as initial clusters.



In order to compensate for the involved discretization effects, we examine the
cell’s neighbors in the three-dimensional grid structure. If the average surface
normal orientation in two neighboring grid cells falls below the cluster size (and
the desired accuracy), the corresponding clusters are merged. For being able to
merge multiple clusters, we keep track of the conducted merges. In case cluster a
should be merged with cluster b that was already merged with cluster c, we check
if we can merge a and c, or if a+ b is a better merge than a+ c. Although this
procedure is less adaptive (and complex) as sophisticated clustering algorithms
like k-Means, mean-shift-clustering or, e.g., ISODATA [7], this simple approach
allows for reliably detecting larger planes in 3D point clouds at high frame rates.
In all modes and resolutions of the camera, plane segmentation is only a matter
of milliseconds. In contrast to region growing algorithms, we find a singe cluster
for planes that are not geometrically connected, e.g., parts of the same wall.

An example segmentation is shown in Figure 2. Planes with similar (or equal)
local surface normal orientations are contained in the same cluster and visualized
with the same color.

4.2 Segmentation refinement in distance space

Up to now the found clusters do not represent single planes but sets of planes
with similar or equal surface normal orientation. For some applications like ex-
tracting all horizontal surfaces, this information can directly be used. For other
applications, we split these normal clusters into plane clusters such that each
cluster resembles a single plane in the environment.

Under the assumption that all points in a cluster are lying on the same plane,
we use the corresponding averaged and normalized surface normal to compute
the distance from the origin to the plane through the point under consideration.
Naturally these distances differ for points on different planes and we can split
clusters in distance space. For compensating the fact that measurements far-
ther away from the sensor are stronger affected by the different error and noise
sources, we compute a logarithmic histogram. Again, points whose distances fall
into the same bin form initial clusters. These clusters are then refined by examin-
ing the neighboring bins just like in the refinement of the normal segmentation.
An example of the resulting plane clusters is shown in Figure 3.

5 Applications

The planes segmented at frame rates of up to 30Hz are useful for a variety of
applications. Here, we use the plane segments as well as the computed surface
normals and spherical coordinates for detecting obstacles and graspable objects
in table top scenes and on the ground floor. In addition, we can compensate for
camera specific noise and error sources by projecting all points onto the planes
they belong to.



(a) 3 Normal clusters (b) Distance space (c) 8 Plane clusters

Fig. 3. Typical result of the second segmentation step: Clusters with similar surface
normal orientations (a) are clustered in distance space (b). Clusters with similar normal
orientations but varying distances (of the respective planes to the origin) are split. For
compensating discretization effects, neighboring clusters are again merged to form the
segmented planes (c). Color coding in (a+c) is random per cluster, and in distance
space from 0.4m (red) to 1.3m (blue) in (b).

5.1 Obstacle and object detection

For detecting obstacles and graspable objects, we first extract all horizontal plane
segments, i.e., those with nx ≈ 1 (and θ ≈ +pi

2 respectively). That is, we exploit
the fact that both the robot as well as objects in its environments are standing
on (or supported by horizontal surfaces). Hence, we need a rough estimate of the
camera orientation in order to determine which planes are horizontal. Further-
more, depending on the robot’s task, e.g., navigation or manipulation of objects
on a table, we limit the height in which we search for horizontal planes.

For navigation purposes, only the ground floor plane (nz ≈ 1, z ≈ 0) is con-
sidered safe. All other points and planes including other horizontal surfaces such
as tables are considered as obstacles. For object detection, we limit the search
space by the height range in which the robot can manipulate. Since our robots
are equipped with a trunk that can be lifted and twisted [reference removed], we
use a range of 0m− 1.2m.

We follow a similar approach as in [9] and [4] for detecting objects. The al-
ready found plane model (consisting of the averaged normals and plane-origin
distances in a plane cluster) is optimized using a RANSAC approach that also
sorts out residual outliers. We then project all cluster points onto the plane and
compute the convex hull. These steps are repeated for all horizontal planes that
have been found in the given height range. For all points from non-horizontal
plane clusters, we then check if they lie above a supporting plane (within a range
of e.g. 30cm) and within the corresponding convex hull (again with a tolerance of
a few centimeters). Points meeting both requirements are then clustered to ob-
tain object candidates. For each of the candidates we compute the centroid and
the oriented bounding box in order to distinguish graspable from non-graspable
objects. Here we simply assume that the minimum side length of graspable ob-
jects needs to lie between 1 and 10cm. Furthermore, we neglect clusters where
the number of contained points falls below a threshold (e.g. 50 points). Figure



(a) Example table scene

(b) Detected obstacles (c) Detected objects

Fig. 4. Typical result of detecting obstacles and objects in a table top setting (a). Even
obstacles (b, red) that, in 3D, do not stick out of the supporting surface (b, green) like
the red lighter are perceived. Detected objects (c) are randomly colored. For being
able to grasp an object, the respective cluster is not considered as an obstacle (in this
example the Pringles box).

4 shows a typical result of detecting graspable objects and obstacles in a table
top setting.

5.2 Correcting local surfaces at detected planes

RGB-D cameras suffer from different noise and error sources, especially dis-
cretization effects in depth measurements and the fact that the cameras are cal-
ibrated for a certain range. Both effects cause considerable measurement errors
in far ranges (e.g. >3.5m). Especially for modeling the geometry of environmen-
tal structures where planes are of special interest, these measurements hinder
from finding accurate surface models. However, with the extracted plane clus-
ters, we can project the contained points onto the corresponding plane to get,
at least, an approximate estimate of the true surface geometry. Figure 5 shows a
typical result of this naïve measurement correction which considerably increases
the quality of acquired geometric information. In fact, the angle between the
two walls in Figure 5.b only deviates by 2◦ from ground truth. However, it is
a matter of future work to take this information into account in a precise and
adaptive sensor model.



(a) Input cloud (left: top view, right: side view)

(b) Output cloud (left: top view, right: side view)

Fig. 5. Typical result of correcting local surface geometry. Shown are the segmented
input cloud (a) and the corrected cloud (b). The views are rotated to be aligned with
the plane tangents of a wall and the ceiling. The distance to the wall (magenta) is
approximately 4m.

6 Experiments

Both the detection of graspable objects and obstacles as well as the naïve correc-
tion using plane segments highly depend on the quality of the estimated surface
normals. In order to evaluate the accuracy of the estimated normals, we con-
ducted a first sequence of experiments comparing the estimated surface normal
at each point with the one computed over the real neighbors using the two-
run Principal Component Analysis as described above. For the neighbor search
a radius r has been chosen that linearly depends on the measured range to
the point under consideration, i.e., a smaller radius for the more accurate close
range measurements and a larger radius for measurements being farther apart
from the sensor. This radius function has been manually adapted for each of the
point clouds used in the experiments in order to guarantee correct (and ground
truth-like) normals.

The presented results have been measured over 40 points clouds taken in 4
different scenes in a real house-hold environment: 1) a table top scene with only
one object, 2) a cluttered table top scene with >50 objects, 3) a room with a clut-
tered table top and distant walls, 4) a longer corridor with several cabinets where
measurement of up to 6m have been taken. In average, a deviation of roughly 10◦

has been measured (see Figure 6(a)). This is primarily caused by the fact that



Resolution Processing time Avg. Deviation Considerable deviations
640× 480 (VGA) 61.84± 7.73 ms 11.75± 3.02 deg roughly 2%
320× 240 (QVGA) 15.08± 2.19 ms 12.39± 3.81 deg roughly 1.2%
160× 120 (QQVGA) 4.32± 0.57 ms 9.32± 2.44 deg roughly 1%

(a) Processing time and accuracy for normal estimation

 0

 2

 4

 6

 8

 10

 12

 14

 16

P1 P2 P3 P4 P5 P6 P7 P8 TOT

Ti
m

e
 /

 m
s

P1: Normal estimation

P2: Cloud transformation

P3: Spherical coordinates

P4: Clustering in normal space

P5: Merging in normal space

P6: Clustering in distance space

P7: Merging in distance space

P8: Model optimization

TOT: Total proceesing time

(b) Processing times (QQVGA) (c) Detection rates

Fig. 6. Run-times for all processing steps (a+b) and reliability of object/obstacle de-
tection (c). 100% of obstacles are perceived (obstacles), and only !obstacles % of the
measurements have been incorrectly classified as obstacles. Roughly 93% (objects) of
the objects have been correctly detected, and only !objects % points have been seg-
mented as belonging to a non-existent object. “Rate” is the frequency with which the
results are provided to other components in the robot control architecture.

the current implementation does not specifically handle edges and corners as is
done with the second PCA run on the weighted covariance. Furthermore, using
nearest neighbor search better compensates for missing measurements in regions
where no depth information is available. However, especially in close range (e.g.
up to 2m), the estimated normals are quite accurate and do not deviate from
the true local surface normals. Only one to two percent of the estimated normals
considerably deviated from the true normals (deviations larger than 25◦).

In all experiments, processing times have been measured on a Core i7 machine
and over several minutes, i.e., several thousand point clouds. No parallel com-
putation has been carried out and all algorithms were run sequentially within a
single thread on a single core. That is, processing times should not considerably
deviate on (newer) notebook computers. Figure 6.b summarizes all results. Ob-
stacles were detected always (100%) and 93% of the objects have been correctly
segmented. The object segmentation gets inaccurate if objects are 1) very small
(dimensions falling below the aforementioned thresholds), or 2) being more than
3.5m away from the sensor (where depth measurements are highly inaccurate).

7 Conclusion

We have presented an approach to real-time 3D point cloud processing that
segments planes in the space of local surface normals. The detected planes have



been used for detecting graspable objects and obstacles as well as for correcting
the measured 3D information. With frame rates of up to 30Hz we can reliably
detect obstacles in the robot’s vicinity as well as objects for manipulation tasks.
However, it remains a matter of future work to find reliable and fast approaches
to more complex tasks like autonomous registration of point clouds or recognizing
detected objects that make use of the acquired surface information.
Data sets and videos are available at: http://purl.org/holz/segmentation.

References

1. D. Droeschel, D. Holz, J. Stückler, and S. Behnke. Using Time-of-Flight Cam-
eras with Active Gaze Control for 3D Collision Avoidance. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2010.

2. F. Endres, C. Plagemann, C. Stachniss, and W. Burgard. Unsupervised discovery
of object classes from range data using latent dirichlet allocation. In Proc. of
Robotics: Science and Systems, 2009.

3. D. Holz, C. Lörken, and H. Surmann. Continuous 3D Sensing for Navigation and
SLAM in Cluttered and Dynamic Environments. In Proc. of the International
Conference on Information Fusion (FUSION), 2008.

4. D. Holz, R. Schnabel, D. Droeschel, J. Stückler, and S. Behnke. Towards Seman-
tic Scene Analysis with Time-of-Flight Cameras. In Proc. of the 14th RoboCup
International Symposium, 2010.

5. K. Lai and D. Fox. 3D laser scan classification using web data and domain adap-
tation. In Proc. of Robotics: Science and Systems, 2009.

6. S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nüchter, and J. Hertzberg.
Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics,
Special Issue on Three-Dimensional Mapping, Part 2, 26(11-12):934–965, 2009.

7. N. Memarsadeghi, D. M. Mount, N. S. Netanyahu, and J. Le Moigne. A fast im-
plementation of the isodata clustering algorithm. International Journal of Com-
putational Geometry and Applications, 17:71–103, 2007.

8. A. Nüchter and J. Hertzberg. Towards semantic maps for mobile robots. Robotics
and Autonomous Systems, 56(11):915–926, 2008.

9. R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Close-range Scene Seg-
mentation and Reconstruction of 3D Point Cloud Maps for Mobile Manipulation
in Human Environments. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2009.

10. B. Steder, R. B. Rusu, K. Konolige, and W. Burgard. NARF: 3D range image
features for object recognition. In Workshop on Defining and Solving Realistic
Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), 2010.

11. R. Triebel, J. Shin, and R. Siegwart. Segmentation and unsupervised part-based
discovery of repetitive objects. In Proc. of Robotics: Science and Systems, 2010.

12. O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner. 2D Mapping of Clut-
tered Indoor Environments by Means of 3D Perception. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2004.

13. F. Yuan, A.s Swadzba, R. Philippsen, O. Engin, M. Hanheide, and S. Wachsmuth.
Laser-based navigation enhanced with 3D time-of-flight data. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2008.


